

NATIONAL INSTITUTE OF AEROSPACE

Hemisphere/Wing Grid Generation Codes

Prepared by Hiroaki Nishikawa for Solver Technology for Turbulent flows (STT) 04-08-2017.

Available codes

Hemisphere-cylinder grid generation code

hcf_hc_v7p5.f90

3D-wing grid generation code

hcf_wing_v3p3.f90

Topologically equivalent to HC grid.

Regular coarsening code

hcf_coarsening_v2p1.f90

This program regularly coarsens HC or 3D-wing grids.

Hemisphere Cylinder

hcf_hc_v7p5.f90

Geometry

Hemisphere outer boundary:

Hemisphere-cylinder:

Apex at the origin Radius of the hemisphere = 0.5

Tetra

Prism

Prism-Tetra

Prism-Hex

Structured (Hex+prism)

Outflow boundary

Half: Tetra

Half: Prism

Half: Prism-Tetra

Half: Prism-Hex

Half: Structured (Hex+prism) NATIONAL INSTITUTE OF AEROSPACE

Package

Download hc_v7p5_release_light.tar.gz at TMR website:

HC: NASA Langley TMR website

%tar -xvf hc_v7p5_release_light.tar.gz

- hcf_hc_v7p5.f90
- hcf_coarsening_v2p1.f90
- readme_release_light.txt
- sample_input , sample_input_coarsen
- sample_input_tets, sample_input_tets_coarsen

%source readme_release_light.txt

Sample structured grids and tetrahedral grids are generated.

readme_release_light.txt

- > Compile the codes gfortran -o hcf_hc hcf_hc_v7p5.f90 gfortran -o hc_coarsening hcf_coarsening_v2p1.f90
- > Generate a structured grid
 hcf_hc < sample_input</pre>

- > Generate coarser grids hc_coarsening < sample_input_coarsen</p>
- > Generate a tetrahedral grid
 hcf_hc < sample_input_tets</pre>
- > Generate coarser grids hcf_coarsening < sample_input_tets_coarsen</p>

Input parameters

"sample_input" in hc_v7p5_release_light.tar.gz

```
350000
         !Target Reynolds number
         !Target y-plus value
         !Element-type: 1=prsm, 2=tets, 3=prsm/tets, 4=prsm/hex, 5=Strct
         !T = unformatted .ugrid/.ufmt, F = formatted .ugrid/.p3d
100
         !Distance to outer boundary (=radius of the outer hemisphere)
48
         !Elements along the cylinder
10
         !Length of hemisphere-cylinder (apex to base = x2)
16
         !Elements along the hemisphere (x=0 \text{ to } 0.5)
256
         !Elements in the radial direction
2
         !1: full geometry, 2: a half domain (y > 0 only).
Т
            = Write a boundary grid (Tecplot)
         !T = Write a volume grid (Tecplot)
         !T = Write a 'k'-file (required by the coarsening program)
         !T = Write line files (e.g., for line-relaxation)
         !T = Write _ugrid file (any type of grid)
         !T = Write .p3d/.umft and .nmf files (igrid_type = 5 only).
             Note: Items in red are required for regular coarsening.
```

Typical Output

.ugrid/p3d(.ufmt): Grid file

.mapbc : BC file

.lines_fmt : List of nodes in lines within the BL region

.lines_fmt_all: List of all nodes in lines to the outer boundary.

.k : Structured index file (for coarsening)

Tecplot boundary/volume files.

Geometry

Hemisphere outer boundary:

Radius of the hemisphere (input)

Hemisphere-cylinder:

Apex at the origin Radius of the hemisphere = 0.5 Length of the HC_{=x-coordinate of the base center} (input)

Grid size parameters

Three input parameters.

NC !# of Elements along the cylinder

NH!# of Elements along the hemisphere

NR !# of Elements in the radial direction

Other input parameters.

Re !Target Reynolds number

y_plus !Target y-plus value

Grid size of the BL region is determined inside the code based on these parameters.

Hemisphere grid

Structured grid

Hex+prisms

of elements (input) 4

Unstructured grid

Prism/Tetra/Mixed1/Mixed2

Elsewhere, nodes are generated by the same algorithm.

Grid spacing: BL region

Target Re (input)
Target y+ (input)

BL region thickness is constant over the surface. It has been checked to fully contain boundary layers for intended Reynolds numbers.

y+ will increase progressively for coarser grids generated by regular coarsening (removing every other node).

First-Off-The-Wall spacing = dr1 is determined for a target y+: dr1 = target_y_plus*(sqrt(2*cf)/Re), cf = 0.026/Re^(1/7)

Nodes in the BL region is determined by a geometric sequence to achieve the outer spacing of 10% of a surface grid spacing.

Grid spacing: outer region

of total elements in the radial direction (input)

Input value must be large enough, or the code stops and asks you to try again with a suggested value.

Grid spacing: cylinder surface

Uniform spacing with 1.1s if possible. s_1.1s If not, apply exponential stretching.

Common Structured Index: k5

Nodes have structured indices: (k1,k2,k3,k4,k5): k5 is common to all grids.

Structured Indices: k1, k2, k3

Structured grid

Hex+prisms

k2 and k3 not used in structured grids.

Unstructured grid

Prism/Tetra/Mixed1/Mixed2

Structured Index k4

Structured grid

Hex+prisms

Unstructured grid

Prism/Tetra/Mixed1/Mixed2

Lines

.lines_fmt_all:

List of nodes in the radial grid lines from surface nodes to the corresponding outer-boundary nodes.

.lines_fmt:

List of nodes in lines within the BL region.

can be used for line-agglomeration, line-relaxation.

3D Wing Grids

Topologically equivalent to HC grids

hcf_wing_v3p3.f90

Topologically Equivalent to HC

Wing grid is generated by mapping a full-geometry HC onto a wing with a specified wing section:

Hemisphere -> Round tip (rotated wing section)
Cylinder -> Wing surface

(Far-field surface mesh is the same between HC and wing.)

Wing section can be specified by the last two digits of NACA00XX or by a set of discrete points.

The grid is topologically equivalent to a HC grid. Input values, node generation, line information, and structured indices are the same as the HC grid case.

Tetra

Far field boundary (hemisphere shape)

Prism

Prism-Tetra

Thin prism layer over the wing surface; tetra everywhere else.

Prism-Hex

Prisms over the round tip to farfield; hex everywhere else.

Structured (Hex+prism)

Prisms are around the center of the round tip; hex are everywhere else. (Prisms extend to the farfield.)

Package

Download wing_v3p3_release_light.tar.gz at TMR website:

ONERA M6: NASA Langley TMR website

%tar -xvf wing_v3p3_release_light.tar.gz

- hcf_wing_v3p3.f90
- hcf_coarsening_v2p1.f90
- readme_release_light.txt
- sample_input , sample_input_coarsen
- sample_input_tets, sample_input_tets_coarsen

%source readme_release_light.txt

Sample structured grids and tetrahedral grids are generated.

readme_release_light.txt

- > Compile the codes gfortran -o hcf_wing hcf_wing_v3p3.f90 gfortran -o hc_coarsening hcf_coarsening_v2p1.f90
- > Generate a structured grid hcf_hc < sample_input

- > Generate coarser grids hc_coarsening < sample_input_coarsen</p>
- > Generate a tetrahedral grid
 hcf_hc < sample_input_tets</pre>
- > Generate coarser grids hcf_coarsening < sample_input_tets_coarsen</p>

Input parameters

"sample_input" in wing_v3p2_release_light.tar.gz

```
!Target Reynolds number based on the root chord (=1 in the grid).
14.6e6
                              !Target y-plus value
                              !Element-type: 1=prsm, 2=tets, 3=prsm/tets, 4=prsm/hex, 5=Strct
                              !T = unformatted .ugrid/.ufmt, F = formatted .ugrid/.p3d
                              !airfoil_type: =0 discrete airfoil data, =1 NACA00XX
om6_wing_section_sharp.dat !Datafile for the discrete airfoil data
                                                                                 ; not used if airfoil type = 1
                              !Last two digits of NACA00XX (15 for NACA0015); not used if airfoil_type = 0
0.5625159852668158
                              !Taper ratio = (tip chord)/(root chord)
                              !Swept angle of LE line in degrees (not too large, please: e.g., < 40).
29.9990
                              !Distance to outer boundary (=radius of the outer hemisphere)
100
24
                              !# of Elements along the semi-wingspan
1.476017976219800
                              !b = semi-span: per unit root chord.
8
                              !# of Elements along the rounded tip divided by 2.
88
                              !# of Elements in the radial direction (from wing to farfield)
2
                              !wing_side: =1 for left wing, =2 for right wing.
0.0
                              !root_le_x: = x coordinate of the LE at the root.
                              !T = Write a boundary grid (Tecplot)
F
                              !T = Write a volume grid (Tecplot)
                              !T = Write a 'k'-file (required by the coarsening program)
                              !T = Write line files (e.g., for line-relaxation)
                              !T = Write .ugrid file (any type of grid)
                              !T = Write .p3d/.umft and .nmf files (igrid_type = 5 only)
```

Note: Items in red are required for regular coarsening.

Airfoil Data

Currently, the code accepts only a symmetric airfoil.

NACAXX (airfoil_type = 1):

Specify the last two digits as input parameter.

Discrete data (airfoil_type = 0):

Provide a file containing the points that define the half-thickness of a desired airfoil (the number of points, followed by a list of x-coordinates, and then a list of y-coordinates).

Specify the filename as input parameter. The code constructs cubic splines from the discrete data, and uses it to generate a grid.

Example of an OM6 wing section is provided: See "om6_wing_section_sharp.dat" AIAA J. Vol. 54, No. 9, September 2016.

Example: ONERA M6 Wing

Airfoil data: "om6_wing_section_sharp.dat"

Data taken from AIAA J. Vol. 54, No. 9, September 2016.

Input parameters: All input given for unit root-chord length.

Target Re = 14.6e6

Leading Edge Sweep = 29.9990 degrees

Taper ratio = 0.5625159852668158

semi-span = 1.47601797621980

Output

.ugrid/p3d(.ufmt): Grid file

.mapbc : BC file

.lines_fmt : List of nodes in lines within the BL region

.lines_fmt_all: List of all nodes in lines to the outer boundary.

.k : Structured index file (for coarsening)

Tecplot boundary/volume files.

Regular Coarsening for HC/Wing grids

hcf_coarsening_v2p1.f90

Regular coarsening

HC/Wing grids can be regularly coarsened by using the coarsening program (included in each package):

hcf_coarsening_v2p1.f90

It will coarsen a target grid (generated by the HC/Wing gird generation code) by removing every other node. It continues to coarsen grids until it is not possible.

Required Input files

Four files must be available for a target fine grid:

```
xxx.1.ugrid
xxx.1.lines_fmt
xxx.1.lines_fmt_all
```

xxx.1.k

where xxx = 'hc_tetra', 'wing_tetra', etc.

Make sure these files are generated when you generate a target fine grid by the HC/Wing grid generation program.

Coarsening level

Coarsening level is determined by the input parameters used in the HC/Wing grid generation program.

Key input parameters.

NC !# of Elements along the cylinder

NH !# of Elements along the hemisphere (apex to shoulder)

NR !# of Elements in the radial direction

of Coarse Grids

of coarse grids = min(m4, m1, m5)

-Structured:

Full geometry

 $k4=NC+NH = 2^m4$, $k1=6^*NH = 2^m1$, $k5=NR = 2^m5$

Half geometry

 $k4=NC+NH = 2^m4$, $k1=3^NH = 2^m1$, $k5=NR = 2^m5$

— Unstructured:

 $k4=NC = 2^m4$, $k1=NH = 2^m1$, $k5=NR = 2^m5$

HC/Wing grid generation code prints out the maximum possible coarsening level on screen as soon as it reads input parameters.

Input parameters

Sample input parameters for hcf_coarsening_v2p1.f90

Example for "hc_tetra":

```
hc_tetra !project name: = 'hc_prism', 'hc_tetra', 'hc_mixed', 'hc_mixed_ph', 'hc_strct' 'wing_prism', 'wing_tetra', 'wing_mixed', 'wing_mixed_ph', 'wing_strct'
```

```
T !T=unformatted .ugrid (F=formatted)
```

F !T=Tet2Prism on coarse grids, F=Keep tets

T !T=Write a boundary grid (Tecplot)

F !T=Write a volume grid (Tecplot)

It can generate all-prism coarse grids for a tetrahedral grid. The code continues coarsening until it is not possible.

Output

.ugrid/p3d(.ufmt): Grid files for all coarse grids.

.mapbc : BC file

.lines_fmt : List of nodes in lines within the BL region

.lines_fmt_all: List of all nodes in lines to the outer boundary.

.k : Structured index file (for coarsening)

.prolong_nc : Inter-grid interpolation information

.prolong_nc_seq: List of nested nodes

.midp : List of edge 'mid-point' coordinates.

can be used to create a P2 grid

Tecplet boundary/volume files.

Coarsening example (HC)

Structured grids:

Half geometry

Finest grid generated by

NC = 48

NH = 16

NR = 256

See "sample_input"

Coarsening example (Wing)

Tetra grids:

Finest grid generated by

NC = 24

NH = 8

NR = 88

See "sample_input_tets"

Inter-Grid Nodal Interpolation

Inter-grid nodal interpolation information is given in two files: .prolong_nc_seq (nested nodes) .prolong_nc (others)

Pure tetrahedral grids:

Injection at nested nodes. Average over coarse-nghbr nodes.

Note: Find-grid node is not necessarily at the midpoint of the coarse-grid edge.

Other grids:

Injection at nested nodes.

Average over coarse-nghbr nodes.

Average over nearest coarse-grid nodes (if no nghbrs).

'Midpoint' data

.midp file is generated for each coarser grid (tetra only).

This file contains a list of nodes removed from the finer grid, which correspond to nodes between coarse-grid edges (not exactly the edge-midpoint). These nodes are on the true geometry on the boundary. So, P2 tetrahedral mesh can be constructed for all coarser grids.

P2 grid indicated in red.